Combining rational design and continuous evolution on minimalist proteins that target DNA

Author:

Inamoto Ichiro,Sheoran Inder,Popa Serban C.,Hussain Montdher,Shin Jumi A.ORCID

Abstract

ABSTRACTWe designedMEFto mimic the basic region/helix-loop-helix/leucine zipper (bHLHZ) domain of transcription factors Max and Myc, which bind with high DNA sequence specificity and affinity to the E-box motif (enhancer box, CACGTG). To makeMEF, we started with our rationally designed ME47, a hybrid of the Max basic region and E47 HLH, that effectively inhibited tumor growth in a mouse model of breast cancer. ME47, however, displays propensity for instability and misfolding. We therefore sought to improve ME47’s structural and functional features. We used phage-assisted continuous evolution (PACE) to uncover “nonrational” changes to complement our rational design. PACE mutated Arg12 that contacts the DNA phosphodiester backbone. We would not have rationally made such a change, but this mutation improved ME47’s stability with little change in DNA-binding function. We mutated Cys29 to Ser and Ala in ME47’s HLH to eliminate undesired disulfide formation; these mutations reduced E-box binding activity. To compensate, we fused the designed FosW leucine zipper to ME47 to increase the dimerization interface and improve protein stability and E-box targeting activity. This “franken-protein”MEFcomprises the Max basic region, E47 HLH, and FosW leucine zipper—plus mutations that arose during PACE and rational design—and is a tractable, reliable proteinin vivoandin vitro.Compared with ME47,MEFgives three-fold stronger binding to E-box with four-fold increased specificity for E-box over nonspecific DNA. Generation ofMEFdemonstrates that combining rational design and continuous evolution can be a powerful tool for designing proteins with robust structure and strong DNA-binding function.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3