Abstract
ABSTRACTHuman norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analysed a sizeable library of Nanobodies that were raised against the murine norovirus virion with the main purpose of developing Nanobody-based inhibitors. We discovered two types of neutralizing Nanobodies and analysed the inhibition mechanisms using X-ray crystallography, cryo-EM, and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, the Nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these Nanobodies competed with the soluble receptor and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these Nanobodies disrupted a structural change in the capsid associated with binding co-factors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+. Ultimately, these Nanobodies directly obstructed a structural modification reserved for a post-receptor attachment stage. Altogether, our new data show that Nanobody-based inhibition could occur by blocking functional and structural capsid properties.AUTHOR SUMMARYThis research discovered and analysed two different types of MNV neutralizing Nanobodies. The top-binding Nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding Nanobodies interfered with a structural modification associated with co-factor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for co-factor/receptor binding functions. Blocking these capsid-binding events with Nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific Nanobody binding epitopes were comparable to human norovirus-specific Nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.
Publisher
Cold Spring Harbor Laboratory