Nanobody mediated neutralization reveals an Achilles heel for norovirus

Author:

Koromyslova Anna D.ORCID,Devant Jessica MichelleORCID,Kilic TurgayORCID,Sabin Charles D.,Malak VirginieORCID,Hansman Grant S.

Abstract

ABSTRACTHuman norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analysed a sizeable library of Nanobodies that were raised against the murine norovirus virion with the main purpose of developing Nanobody-based inhibitors. We discovered two types of neutralizing Nanobodies and analysed the inhibition mechanisms using X-ray crystallography, cryo-EM, and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, the Nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these Nanobodies competed with the soluble receptor and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these Nanobodies disrupted a structural change in the capsid associated with binding co-factors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+. Ultimately, these Nanobodies directly obstructed a structural modification reserved for a post-receptor attachment stage. Altogether, our new data show that Nanobody-based inhibition could occur by blocking functional and structural capsid properties.AUTHOR SUMMARYThis research discovered and analysed two different types of MNV neutralizing Nanobodies. The top-binding Nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding Nanobodies interfered with a structural modification associated with co-factor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for co-factor/receptor binding functions. Blocking these capsid-binding events with Nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific Nanobody binding epitopes were comparable to human norovirus-specific Nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Andrew M.Q. King MJA , Eric B. Carstens , and Elliot J . Lefkowitz. Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. 2011.

2. Caliciviridae: the noroviruses;Fields Virology,2013

3. Norovirus Disease in the United States

4. Burden of Norovirus Gastroenteritis in the Ambulatory Setting--United States, 2001-2009

5. Noroviruses: The Most Common Pediatric Viral Enteric Pathogen at a Large University Hospital After Introduction of Rotavirus Vaccination

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3