Regulated unbinding of ZAP70 at the T cell receptor by kinetic avidity

Author:

Goyette Jesse,Depoil David,Yang Zhengmin,Isaacson Samuel A.ORCID,Allard Jun,van der Merwe P. Anton,Gaus KatharinaORCID,Dustin Michael L,Dushek OmerORCID

Abstract

AbstractProtein-protein binding domains are critical in signalling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain-containing proteins have tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signalling, which is a critical requirement of noise filtering mechanisms such as kinetic proofreading. Here, we use modelling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases when tandem domains bind by a kinetic, but not a static, avidity mode. We use surface plasmon resonance to show that ZAP70, a tandem SH2 domain-containing kinase, binds kinetically to biphosphorylated peptides from the T cell antigen receptor (TCR) and that the unbinding rate can be accelerated by the phosphatase CD45. An important functional prediction of regulated unbinding is that the intracellular ZAP70/TCR half-life in T cells will be correlated to the extracellular TCR/antigen half-life and we show that this is the case in both cell lines and primary T cells. The work highlights that binding by kinetic avidity breaks the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discriminated mediated by kinetic proofreading.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3