Genomic Prediction with Genotype by Environment Interaction Analysis for Kernel Zinc Concentration in Tropical Maize Germplasm

Author:

Mageto Edna K.,Crossa JoseORCID,Pérez-Rodríguez Paulino,Dhliwayo Thanda,Palacios-Rojas Natalia,Lee Michael,Guo Rui,Vicente Félix San,Zhang Xuecai,Hindu Vemuri

Abstract

ABSTRACTZinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world’s population. To study the potential of genomic selection (GS) for maize with increased Zn concentration, an association panel and two doubled haploid (DH) populations were evaluated in three environments. Three genomic prediction models, M (M1: Environment + Line, M2: Environment + Line + Genomic, and M3: Environment + Line + Genomic + Genomic x Environment) incorporating main effects (lines and genomic) and the interaction between genomic and environment (G x E) were assessed to estimate the prediction ability (rMP) for each model. Two distinct cross-validation (CV) schemes simulating two genomic prediction breeding scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2 predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 ranged from −0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and −0.001 to 0.47 for the association panel. For CV2, rMP values ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 0.72 for the association panel. The genomic prediction model which included G x E had the highest average rMP for both CV1 (0.39 and 0.44) and CV2 (0.71 and 0.51) for the association panel and DH2 population, respectively. These results suggest that GS has potential to accelerate breeding for enhanced kernel Zn concentration by facilitating selection of superior genotypes.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Genetic variability and stability for kernel iron and zinc concentration in maize (Zea mays L.) genotypes;Indian J. Genet. Plant Breed,2012

2. Agronomic Practices that Affect Corn Kernel Characteristics;Agron. J,1993

3. Genome-based prediction of testcross values in maize

4. Alvarado, G. , M. López , M. Vargas , A. Pacheco , F. Rodríguez et al., 2016 META-R (Multi Environment Trial Analysis with R for Windows) Version 6.04.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3