Voltage-gated calcium channel subunit α2δ-3 shapes light responses of mouse retinal ganglion cells mainly in low and moderate light levels

Author:

Seitter HartwigORCID,Sothilingam Vithiyanjali,Benkner Boris,Garrido Marina Garcia,Kling Alexandra,Pirone Antonella,Seeliger MathiasORCID,Münch Thomas A.ORCID

Abstract

AbstractLittle is known about the function of the auxiliary α2δ subunits of voltage-gated calcium channels in the retina. We investigated the role of α2δ-3 (Cacna2d3) using a mouse in which α2δ-3 was knocked out by LacZ insertion. Behavior experiments indicated a normal optokinetic reflex in α2δ-3 knockout animals. Strong expression of α2δ-3 could be localized to horizontal cells using the LacZ-reporter, but horizontal cell mosaic and currents carried by horizontal cell voltage-gated calcium channels were unchanged by the α2δ-3 knockout.In vivoelectroretinography revealed unaffected photoreceptor activity and signal transmission to depolarizing bipolar cells. We recorded visual responses of retinal ganglion cells with multi-electrode arrays in scotopic to photopic luminance levels and found subtle changes in α2δ-3 knockout retinas. Spontaneous activity in OFF ganglion cells was elevated in all luminance levels. Differential response strength to high- and low-contrast Gaussian white noise was compressed in ON ganglion cells during mesopic ambient luminance and in OFF ganglion cells during scotopic and mesopic ambient luminances. In a subset of ON ganglion cells, we found a sharp increase in baseline spiking after the presentation of drifting gratings in scotopic luminance. This increase happened after gratings of different spatial properties in knockout compared to wild type retinas. In a subset of ON ganglion cells of the α2δ-3 knockout, we found altered delays in rebound-like spiking to full-field contrast steps in scotopic luminance. In conclusion, α2δ-3 seems to participate in shaping visual responses mostly within brightness regimes when rods or both rods and cones are active.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3