Driving factors of conifer regeneration dynamics in eastern Canadian boreal old-growth forests

Author:

Martin MaxenceORCID,Girona Miguel MontoroORCID,Morin Hubert

Abstract

AbstractOld-growth forests play a major role in conserving biodiversity, protecting water resources, sequestrating carbon, and these forests are indispensable resources for indigenous societies. To preserve the ecosystem services provided by these boreal ecosystems, it becomes necessary to develop novel silvicultural practices capable of emulating the natural dynamics and structural attributes of old-growth forests. The success of these forest management strategies depends on developing an accurate understanding of natural regeneration dynamics. Our goal was therefore to identify the main patterns and the drivers involved in the regeneration dynamics of old-growth forests, placing our focus on boreal stands dominated by black spruce (Picea mariana(L.) Mill.) and balsam fir (Balsam fir(L.) Mill.) in eastern Canada. We sampled 71 stands in a 2200 km2study area located within Quebec’s boreal region. For each stand, we noted tree regeneration (seedlings and saplings), structural attributes (diameter distribution, deadwood volume, etc.), and abiotic (topography and soil) factors. We observed that secondary disturbance regimes and topographic constraints were the main drivers of balsam fir and black spruce regeneration. Furthermore, the regeneration dynamics of black spruce appeared more complex than those of balsam fir. We observed distinct phases of seedling production first developing within the understory, then seedling growth when gaps opened in the canopy, followed by progressive canopy closure. Seedling density, rather than the sapling density, had a major role in explaining the ability of black spruce to fill the canopy following a secondary disturbance. The density of balsam fir seedlings and saplings was also linked to the abundance of balsam fir trees at the stand level. This research helps explain the complexity of old-growth forest dynamics where many ecological factors interact at multiple temporal and spatial scales. This study also improves our understanding of ecological processes within native old-growth forests and identifies the key factors to consider when ensuring the sustainable management of old-growth boreal stands.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3