Large-scale sequence similarity analysis reveals the scope of sequence and function divergence in PilZ domain proteins

Author:

Cheang Qing Wei,Sheng Shuo,Xu Linghui,Liang Zhao-XunORCID

Abstract

AbstractPilZ domain-containing proteins constitute a superfamily of widely distributed bacterial signalling proteins. Although studies have established the canonical PilZ domain as an adaptor protein domain evolved to specifically bind the second messenger c-di-GMP, mounting evidence suggest that the PilZ domain has undergone enormous divergent evolution to generate a superfamily of proteins that are characterized by a wide range of c-di-GMP-binding affinity, binding partners and cellular functions. The divergent evolution has even generated families of non-canonical PilZ domains that completely lack c-di-GMP binding ability. In this study, we performed a large-scale sequence analysis on more than 28,000 single- and di-domain PilZ proteins using the sequence similarity networking tool created originally to analyse functionally diverse enzyme superfamilies. The sequence similarity networks (SSN) generated by the analysis feature a large number of putative isofunctional protein clusters, and thus, provide an unprecedented panoramic view of the sequence-function relationship and function diversification in PilZ proteins. Some of the protein clusters in the networks are considered as unexplored clusters that contain proteins with completely unknown biological function; whereas others contain one, two or a few functionally known proteins, and therefore, enabling us to infer the cellular function of uncharacterized homologs or orthologs. With the ultimate goal of elucidating the diverse roles played by PilZ proteins in bacterial signal transduction, the work described here will facilitate the annotation of the vast number of PilZ proteins encoded by bacterial genome and help to prioritize functionally unknown PilZ proteins for future studies.ImportanceAlthough PilZ domain is best known as the protein domain evolved specifically for the binding of the second messenger c-di-GMP, divergent evolution has generated a superfamily of PilZ proteins with a diversity of ligand or protein-binding properties and cellular functions. We analysed the sequences of more than 28,000 PilZ proteins using the sequence similarity networking (SSN) tool to yield a global view of the sequence-function relationship and function diversification in PilZ proteins. The results will facilitate the annotation of the vast number of PilZ proteins encoded by bacterial genomes and help us prioritize PilZ proteins for future studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3