Larger bacterial populations evolve heavier fitness trade-offs and undergo greater ecological specialization

Author:

Chavhan Yashraj,Malusare Sarthak,Dey SutirthORCID

Abstract

AbstractEvolutionary studies over the last several decades have invoked fitness trade-offs to explain why species prefer some environments to others. However, the effects of population size on trade-offs and ecological specialization remain largely unknown. To complicate matters, trade-offs themselves have been visualized in multiple ways in the literature. Thus, it is not clear how population size can affect the various aspects of trade-offs. To address these issues, we conducted experimental evolution withEscherichia colipopulations of two different sizes in two nutritionally limited environments and studied fitness trade-offs from three different perspectives. We found that larger populations evolved greater fitness trade-offs, regardless of how trade-offs are conceptualized. Moreover, although larger populations adapted more to their selection conditions, they also became more maladapted to other environments, ultimately paying heavier costs of adaptation. To enhance the generalizability of our results, we further investigated the evolution of ecological specialization across six different environmental pairs and found that larger populations specialized more frequently and evolved consistently steeper reaction norms of fitness. This is the first study to demonstrate a relationship between population size and fitness trade-offs and the results are important in understanding the population genetics of ecological specialization and vulnerability to environmental changes.

Publisher

Cold Spring Harbor Laboratory

Reference108 articles.

1. Abdi H (2010). Holm’s sequential Bonferroni procedure. Encycl Res Des: 1–8.

2. Tradeoffs and negative correlations in evolutionary ecology;Evol Darwin First,2010

3. Genetic trade-offs and conditional neutrality contribute to local adaptation

4. Antibiotic resistance and its cost: is it possible to reverse resistance?

5. Inactivation of metabolic genes causes short- and long-range dys-regulation in Escherichia coli metabolic network;PloS One,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3