The properties of buried ion pairs are governed by the propensity of proteins to reorganize

Author:

Kougentakis Christos M.ORCID,Skerritt Lauren,Majumdar Ananya,Schlessman Jamie L.,García-Moreno E. Bertrand

Abstract

AbstractCharges are incompatible with the hydrophobic interior of proteins, yet proteins use buried charges, often in pairs or networks, to drive energy transduction processes, catalysis, pH-sensing, and ion transport. The structural adaptations necessary to accommodate interacting charges in the protein interior are not well understood. According to continuum electrostatic calculations, the Coulomb interaction between two buried charges cannot offset the highly unfavorable penalty of dehydrating two charges. This was investigated experimentally with two variants of staphylococcal nuclease (SNase) with Glu:Lys or Lys:Glu pairs introduce at internal i, i+4 positions on an α-helix. Contrary to expectations from previous theoretical and experimental studies, the proteins tolerated the charged ion pairs in both orientations. Crystal structures and NMR spectroscopy studies showed that in both variants, side chains or backbone are reorganized. This leads to the exposure of at least one of the two buried groups to water. Comparison of these ion pairs with a highly stable buried ion pair in SNase shows that the location and the amplitude of structural reorganization can vary dramatically between ion pairs buried in the same general region of the protein. The propensity of the protein to populate alternative conformation states in which internal charges can contact water appears to be the factor that governs the magnitude of electrostatic effects in hydrophobic environments. The net effect of structural reorganization is to weaken the Coulomb interactions between charge pairs; however, the reorganized protein no longer has to pay the energetic penalty for burying charges. These results provide the framework necessary to understand the interplay between the dehydration of charges, Coulomb interactions and protein reorganization that tunes the functional properties of proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3