Abstract
SUMMARYDispersal is a key process driving local-scale community assembly and global-scale biogeography of plant symbiotic arbuscular mycorrhizal (AM) fungal communities. A trait-based approach could improve predictions regarding how AM fungal aerial dispersal varies by species.We conducted month-long collections of aerial AM fungi for 12 consecutive months in an urban mesic environment at heights of 20 m. We measured functional traits of all collected spores and assessed aerial AM fungal community structure both morphologically and with high-throughput sequencing.Large numbers of AM fungal spores were present in the air over the course of one year and these spores were more likely to exhibit traits that facilitate dispersal. Aerial spores were smaller than average for Glomeromycotinan fungi. Trait-based predictions indicate that nearly 1/3 of described species from diverse genera demonstrate the potential for aerial dispersal. Diversity of aerial AM fungi was relatively high (20 spore species and 17 virtual taxa) and both spore abundance and community structure shifted temporally.The prevalence of aerial dispersal in arbuscular mycorrhizas is perhaps greater than previously indicated and a hypothesized model of AM fungal dispersal mechanisms is presented. Anthropogenic soil impacts may initiate the dispersal of disturbance-tolerating AM fungal species and facilitate community homogenization.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献