β-L-1-[5-(E-2-Bromovinyl)-2-(hydroxymethyl)-1,3-dioxolan-4-yl)] uracil (L-BHDU) effectiveness against varicella-zoster virus and herpes simplex virus type 1 depends on thymidine kinase activity

Author:

De Chandrav,Liu Dongmei,Depledge Daniel,Breuer Judith,Singh Uma S.,Hartline Caroll,Prichard Mark N.,Chu Chung K.,Moffat Jennifer F.

Abstract

Abstractß-L-1-[5-(E-2-bromovinyl)-2-(hydroxymethyl)-1,3-(dioxolan-4-yl)] uracil (L-BHDU) prevents varicella-zoster virus (VZV) replication in cultured cells and in vivo. Its mechanism of action was investigated by evaluating its activity against related herpesviruses and by analyzing resistant VZV strains. L-BHDU was effective against herpes simplex virus type 1 (HSV-1) with an EC50 of 0.22 µM in human foreskin fibroblast (HFF) cells. L-BHDU also inhibited HSV-2 and simian varicella virus (SVV) to a lesser extent. VZV mutants resistant to L-BHDU and other antiviral compounds were obtained by serial passage of the wild type VZV pOka and VZV Ellen strains in the presence of increasing drug concentrations. VZV strains resistant to L-BHDU (L-BHDUR) were cross-resistant to acyclovir (ACV) and brivudin (BVdU) but not to foscarnet (PFA) and cidofovir (CDV). Conversely, ACV-resistant strains were also resistant to L-BHDU. Whole genome sequencing of L-BHDUR strains identified mutations in ATP-binding (G22R) and nucleoside binding (R130Q) domains of VZV thymidine kinase (TK). The wild type and mutant forms of VZV TK were cloned as GST fusion proteins and expressed in E. coli. The partially purified TKG22R-GST and TKR130Q- GST proteins failed to convert thymidine to thymidine monophosphate whereas the wild type TK-GST protein was enzymatically active. Similarly, L-BHDUR virus TK did not phosphorylate the drug. As expected, wild type VZV converted L-BHDU to L-BHDU monophosphate and diphosphate forms. In conclusion, L-BHDU effectiveness against VZV and HSV-1 depends on thymidine kinase activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3