A fast linkage disequilibrium-based statistical test for Genome-Wide Epistatic Selection Scans in structured populations

Author:

Boyrie LéaORCID,Moreau Corentin,Frugier FlorianORCID,Jacquet ChristopheORCID,Bonhomme MaximeORCID

Abstract

AbstractThe quest for genome-wide signatures of selection in populations using SNP data has proven efficient to uncover genes involved in conserved or adaptive molecular functions, but none of the statistical methods were designed to identify interacting genes as targets of selective processes. Here, we propose a straightforward statistical test aimed at detecting epistatic selection, based on a linkage disequilibrium (LD) measure accounting for population structure and heterogeneous relatedness between individuals. SNP-based (Trv) and window-based (TcorPC1v) statistics fit a Student distribution, allowing to easily and quickly test the significance of correlation coefficients in the frame of Genome-Wide Epistatic Selection Scans (GWESS) using candidate genes as baits. As a proof of concept, use of SNP data from theMedicago truncatulasymbiotic legume plant uncovered a previously unknown gene coadaptation between theMtSUNN(Super Numeric Nodule) receptor and theMtCLE02(CLAVATA3-Like) signalling peptide, and experimental evidence accordingly supported aMtSUNN-dependent negative role ofMtCLE02in symbiotic root nodulation. Using human HGDP-CEPH SNP data, our new statistical test uncovered strong LD betweenSLC24A5andEDARworldwide, which persists after correction for population structure and relatedness in Central South Asian populations. This result suggests adaptive genetic interaction or coselection between skin pigmentation and the ectodysplasin pathway involved in the development of ectodermal organs (hairs, teeth, sweat glands), in some human populations. Applying this approach to genome-wide SNP data will foster the identification of evolutionary coadapted gene networks.Author summaryPopulation genomic methods have allowed to identify many genes associated with adaptive processes in populations with complex histories. However, they are not designed to identify gene coadaptation between genes through epistatic selection, in structured populations. To tackle this problem, we developed a straightforward LD-based statistical test accounting for population structure and heterogeneous relatedness between individuals, using SNP-based (Trv) or windows-based (TcorPC1v) statistics. This allows easily and quickly testing for significance of correlation coefficients between polymorphic loci in the frame of Genome Wide Epistatic Selection Scans (GWESS). Following detection of gene coadaptation using SNP data from human and the model plantMedicago truncatula, we report experimental evidence of genetic interaction between two receptors involved in the regulation of root nodule symbiosis inMedicago truncatula. This test opens new avenues for exploring the evolution of genes as interacting units and thus paves the way to infer new networks based on evolutionary coadaptation between genes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3