Altered synaptic plasticity and central pattern generator dysfunction in a Drosophila model of PNKD3 paroxysmal dyskinesia

Author:

Lowe Simon,Kratschmer Patrick,Jepson James E.C.

Abstract

ABSTRACTBackgroundParoxysmal non-kinesigenic dyskinesia type-3 (PNKD3) has been linked to gain-of-function (GOF) mutations in the hSlo1 BK potassium channel, in particular a dominant mutation (D434G) that enhances Ca2+-sensitivity. However, while BK channels play well-known roles in regulating neurotransmitter release, it is unclear whether the D434G mutation alters neurotransmission and synaptic plasticity in vivo. Furthermore, the subtypes of movement-regulating circuits impacted by this mutation are unknown.ObjectivesWe aimed to use a larval Drosophila model of PNKD3 (sloE366G/+) to examine how BK channel GOF in dyskinesia alters synaptic properties and motor circuit function.MethodsWe used video-tracking to test for movement defects in sloE366G/+ larvae, and sharp-electrode recordings to assess the fidelity of Ca2+-dependent neurotransmitter release and short-term plasticity at the neuromuscular junction. We then combined sharp-electrode recording with ex vivo Ca2+-imaging to investigate the functionality of the central pattern generator (CPG) driving foraging behavior in sloE366G/+ larvae.ResultsWe show that the PNKD3 mutation leads to Ca2+-dependent alterations in synaptic release and paired-pulse facilitation. Furthermore, we identify robust alterations in locomotor behaviors in sloE366G/+ larvae which were mirrored by dysfunction of the upstream, movement-generating CPG in the larval ventral nerve cord.ConclusionOur results demonstrate that a BK channel GOF mutation can alter neurotransmitter release and short-term synaptic plasticity, and result in CPG dysfunction, in Drosophila larvae. These data add to a growing body of work linking paroxysmal dyskinesias to aberrant neuronal excitability and synaptic plasticity in pre-motor circuits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3