Is FAM19A5 an adipokine? Peripheral FAM19A5 in wild-type, FAM19A5 knock-out, and LacZ knock-in mice

Author:

Kwak Hoyun,Cho Eun-Ho,Cho Eun Bee,Lee Yoo-Na,Shahapal Anu,Yong Hyo Jeong,Reyes-Alcaraz Arfaxad,Jeong Yongwoo,Lee Yerim,Lee Minhyeok,Ha Nui,Oh Sitaek,Lee Jae Keun,Lee Won Suk,Kim Wonkyum,Hwang Jong-Ik,Seong Jae Young

Abstract

AbstractFAM19A5 (also called TAFA5) is a novel secretory protein that is primarily expressed in the brain. However, a recent study reported that FAM19A5 is an adipocyte-derived adipokine that regulates vascular smooth muscle function. Furthermore, genome-wide association study (GWAS) and RNA-seq analyses revealed that the FAM19A5 was associated with a variety of diseases and tumorigenesis in peripheral tissues. We investigated FAM19A5 transcript and protein levels in the peripheral tissues, including adipose tissues from wild-type, FAM19A5 knock-out, and LacZ knock-in mice. In general, total FAM19A5 transcript levels in the central and peripheral nervous systems were higher than levels in any of the peripheral tissues including adipose tissues. Brain tissues expressed similar levels of the FAM19A5 transcript isoforms 1 and 2, whereas expression in the peripheral tissues predominantly expressed isoform 2. In the peripheral tissues, but not the brain, FAM19A5 protein levels in adipose and reproductive tissues were below detectable limits for analysis by Western blot. Additionally, we found that FAM19A5 protein did not interact with the S1PR2 receptor for G-protein-mediated signal transduction, β-arrestin recruitment, and ligand-mediated internalization. Instead, FAM19A5 was internalized into HEK293 cells in an extracellular matrix protein-dependent manner. Taken together, the present study determined basal levels of FAM19A5 transcripts and proteins in peripheral tissues, which provides compelling evidence to further investigate the function of FAM19A5 in peripheral tissues under pathological conditions, including metabolic diseases and/or tumorigenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3