A stronger transcription regulatory circuit of HIV-1C drives the rapid establishment of latency with implications for the direct involvement of Tat

Author:

Chakraborty Sutanuka,Kabi Manisha,Ranga Udaykumar

Abstract

AbstractThe magnitude of transcription factor binding site variation emerging in HIV-1C, especially the addition of NF-κB motifs by sequence duplication, makes the examination of transcriptional silence challenging. How can HIV-1 establish and maintain latency despite having a strong LTR? We constructed panels of sub-genomic reporter viral vectors with varying copy numbers of NF-κB motifs (0 to 4 copies) and examined the profile of latency establishment in Jurkat cells. We found surprisingly that the stronger the viral promoter, the faster the latency establishment. Importantly, at the time of commitment to latency and subsequent points, Tat levels in the cell were not limiting. Using highly sensitive strategies, we demonstrate the presence of Tat in the latent cell, recruited to the latent LTR. Our data allude, for the first time, to Tat establishing a negative feedback loop during the late phases of viral infection, leading to the rapid silencing of the viral promoter.ImportanceOver the past 10-15 years, HIV-1C has been evolving rapidly towards gaining stronger transcriptional activity by sequence duplication of major transcription factor binding sites. The duplication of NF-κB motifs is unique and exclusive for HIV-1C, a property not shared with any of the other eight HIV-1 genetic families. What mechanism(s) does HIV-1C employ to establish and maintain transcriptional silence despite the presence of a strong promoter and a concomitant strong, positive transcriptional feedback is the primary question we attempted to address in the present manuscript. The role Tat plays in latency reversal is well established. Our work with the most common HIV-1 subtype C (HIV-1C) offers crucial leads towards Tat possessing a dual-role in serving both as transcriptional activator and repressor at different phases of the viral infection of the cell. The leads we offer through the present work have significant implications for HIV-1 cure research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3