Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2

Author:

Park Tamina,Lee Sang-Yeop,Kim Seil,Kim Mi Jeong,Kim Hong Gi,Jun Sangmi,Kim Seung Il,Kim Bum Tae,Park Edmond Changkyun,Park DaeuiORCID

Abstract

AbstractCoronavirus disease 2019 (COVID-19) is a new emerging human infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, also previously known as 2019-nCoV), originated in Wuhan seafood and animal market, China. Since December 2019, more than 69,000 cases of COVID-19 have been confirmed in China and quickly spreads to other counties. Currently, researchers put their best efforts to identify effective drugs for COVID-19. The neutralizing antibody, which binds to viral capsid in a manner that inhibits cellular entry of virus and uncoating of the genome, is the specific defense against viral invaders. In this study, we investigate to identify neutralizing antibodies that can bind to SARS-CoV-2 Sipke (S) protein and interfere with the interaction between viral S protein and a host receptor by bioinformatic methods. The sequence analysis of S protein showed two major differences in the RBD region of the SARS-CoV-2 S protein compared to SARS-CoV and SARS-CoV related bat viruses (btSARS-CoV). The insertion regions were close to interacting residues with the human ACE2 receptor. Epitope analysis of neutralizing antibodies revealed that SARS-CoV neutralizing antibodies used conformational epitopes, whereas MERS-CoV neutralizing antibodies used a common linear epitope region, which contributes to form the β-sheet structure in MERS-CoV S protein and deleted in SARS-CoV-2 S protein. To identify effective neutralizing antibodies for SARS-CoV-2, the binding affinities of neutralizing antibodies with SARS-CoV-2 S protein were predicted and compared by antibody-antigen docking simulation. The result showed that CR3022 neutralizing antibody from human may have higher binding affinity with SARS-CoV-2 S protein than SARS-CoV S protein. We also found that F26G19 and D12 mouse antibodies could bind to SARS-CoV S protein with high affinity. Our findings provide crucial clues towards the development of antigen diagnosis, therapeutic antibody, and the vaccine against SARS-CoV-2.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Li G , Fan Y , Lai Y , Han T , Li Z , Zhou P , Pan P , Wang W , Hu D , Liu X et al: Coronavirus infections and immune responses. J Med Virol 2020.

2. Summary of probable SARS cases with onset of illness form 1 November 2002 to 31 July 2003 [https://www.who.int/csr/sars/country/table2004_04_21/en/]

3. MERS situation update. November 2019 [https://www.who.int/emergencies/mers-cov/en/]

4. Novel Coronavirus (2019-nCoV) Situation Report-1 (21 January 2020) [https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4]

5. Fan Wu , Su Zhao , Bin Yu , Yan-Mei Chen , Wen Wang , Yi Hu , Zhi-Gang Song , Zhao-Wu Tao , Jun-Hua Tian , Yuan-Yuan Pei et al: Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. In: BioRxiv. 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3