Notch1 regulates breast cancer stem cell function via a non-canonical cleavage-independent pathway

Author:

Sui Lufei,Wang Suming,Rodriguez Roberto K.,Sim Danielle,Bhattacharya Nandita,Blois Anna L.,Chen Siqi,Aziz Sura,Schlaeger Thorsten,Rogers Michael S.,Bielenberg Diane,Akslen Lars A.,Watnick Randolph S.

Abstract

AbstractCurrent treatment of triple negative breast cancer patients is hindered by a high incidence of chemoresistance (30-50%). The prevailing theory is that resistance and subsequent recurrence is driven by cancer stem cells. Unfortunately, the functional characterization of cancer stem cells at the molecular level is still incomplete. We show here, that within the canonical breast cancer stem cell population, a subset of cells characterized by high Notch1 expression possesses the tumor-initiating property associated with cancer stem cells. Moreover, the tumor initiating property of these high Notch1-expressing breast cancer stem cells is mediated by a cleavage independent Notch signaling pathway culminating in the repression of SIRT1. Of note, the Notch1-mediated repression of SIRT1 is required not only for tumor initiation, but also for chemoresistance in breast cancer stem cells. Strikingly, inhibition of SIRT1 obviates the requirement for Notch1, marking the first example of conferring cancer stem cell function by inhibiting the activity of a single protein. We also demonstrate that progenitor-like mammary epithelial cells, which possess both luminal and basal properties, are also characterized by high Notch1 expression and repression of SIRT1 via the non-canonical pathway. These findings provide the first functional mechanistic requirements for tumor initiation by breast cancer stem cells and suggest that activation of the non-canonical Notch1 pathway is hardwired into tumor-initiating progenitor cells and thus a prerequisite for tumor initiation.Statement of SignificanceWe demonstrate that chemoresistant and tumor-initiating properties of breast cancer stem cells are driven by repression of SIRT1 via non-canonical Notch signaling, suggesting a novel therapeutic strategy for triple negative breast cancer.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3