Abstract
AbstractThe aggregation and joint analysis of large numbers of exome sequences has recently made it possible to de-rive estimates of intolerance to loss-of-function (LoF) variation for human genes. Here, we demonstrate strong and widespread coupling between genic LoF-intolerance and promoter CpG density across the human genome. Genes downstream of the most CpG-rich pro-moters (top 10% CpG density) have a 67.2% probability of being highly LoF-intolerant, using the LOEUF metric from gnomAD. This is in contrast to 7.4% of genes downstream of the most CpG-poor (bottom 10% CpG density) promoters. Combining promoter CpG density with exonic and promoter conservation explains 33.4% of the variation in LOEUF, and the contribution of CpG density exceeds the individual contributions of exonic and promoter conservation. We leverage this to train a simple and easily interpretable predictive model that out-performs other existing predictors and allows us to classify 1,760 genes – which currently lack reliable LOEUF estimates – as highly LoF-intolerant or not. These predictions have the potential to aid in the interpretation of novel patient variants. Moreover, our results reveal that high CpG density is not merely a generic feature of human promoters, but is preferentially encountered at the promoters of the most selectively constrained genes, calling into question the prevailing view that CpG islands are not subject to selection.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献