Ovarian Cancer Risk Variants are Enriched in Histotype-Specific Enhancers that Disrupt Transcription Factor Binding Sites

Author:

Jones Michelle R.ORCID,Peng Pei-ChenORCID,Coetzee Simon G.,Tyrer Jonathan,Reyes Alberto L.,de la Fuente Rosario I. CoronaORCID,Davis Brian,Chen Stephanie,Dezem Felipe,Seo Ji-Heui,Berman Benjamin P.,Freedman Matthew L.,Plummer Jasmine T.,Lawrenson Kate,Pharoah PaulORCID,Hazelett Dennis J.ORCID,Gayther Simon A.,

Abstract

AbstractQuantifying the functional effects of complex disease risk variants can provide insights into mechanisms underlying disease biology. Genome wide association studies (GWAS) have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants lie in the non-coding genome, suggesting they mediate their function through the regulation of gene expression by their interaction with tissue specific regulatory elements (REs). In this study, by intersecting germline genetic risk data with regulatory landscapes of active chromatin in ovarian cancers and their precursor cell types, we first estimated the heritability explained by known common low penetrance risk alleles. The narrow sense heritabilityof both EOC overall and high grade serous ovarian cancer (HGSOCs) was estimated to be 5-6%. Partitioned SNP-heritability across broad functional categories indicated a significant contribution of regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from public resources (Roadmap Epigenomics and ENCODE), and H3K27Ac ChIP-Seq data generated in 26 ovarian cancer-relevant cell types. We identified significant enrichment of risk SNPs in active REs marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in active REs influence predisposition to ovarian cancer, we used motifbreakR to predict the disruption of transcription factor binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that break TF motifs (enrichment P-Value < 1×10−5compared to control variants). The most frequently broken motif was REST (P-Value = 0.0028), which has been reported as both a tumor suppressor and an oncogene. These systematic functional annotations with epigenomic data highlight the specificity of the regulatory landscape and demonstrate functional annotation of germline risk variants is most informative when performed in highly relevant cell types.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3