Revealing Atomic-scale Molecular Diffusion of a Plant Transcription Factor WRKY domain protein along DNA

Author:

Dai Liqiang,Xu Yongping,Du Zhenwei,Su Xiao-dong,Yu JinORCID

Abstract

AbstractTranscription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here we constructed a TF model system of the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on the DNA employing all-atom molecular dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to the Crick strand of DNA with significantly stronger energetic association than to the Watson strand. The preferential binding becomes highly prominent from non-specific to specific DNA binding, but less distinct from static binding to diffusive movements of WRKY on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base pair (bp) stepping cycle of WRKY tracking along major groove of DNA with homogenous (AT)n sequence, as individual protein-DNA contacts break and reform at the binding interface. Continuous tracking of WRKY forward or backward, with occasional sliding as well as strand crossing to the minor groove of DNA, have also been captured in the simulation. The processive diffusion of WRKY had been confirmed by accompanied single-molecule fluorescence assays and coarse-grained (CG) structural simulations. The study thus provides unprecedented structural dynamics details on the TF diffusion, suggests how TF possibly approaches to gene target, and supports further high-precision experimental follow-up. The stochastic movements revealed in the TF diffusion also provide general clues on how other nucleic acid walkers step and slide along DNA.Significance StatementHow transcription factors search for target genes impact on how quickly and accurately the genes are transcribed and expressed. To locate target sufficiently fast, 1D diffusion of the protein along DNA appears essential. Experimentally, it remains challenging to determine diffusional steps of protein on DNA. Here, we report all-atom equilibrium simulations of a WRKY protein binding and diffusing on DNA, revealing structural dynamics details which have not been identified previously. We unprecedently demonstrate a complete stepping cycle of the protein for one base pair on DNA within microseconds, along with stochastic stepping or sliding, directional switching, and strand crossing. Additionally, we have found preferential DNA strand association of WRKY. These suggest how protein factors approach toward target DNA sequences.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3