When to depart from a stopover site? Time since arrival matters more than current weather conditions

Author:

Roques SébastienORCID,Henry Pierre-YvesORCID,Guyot Gaétan,Bargain Bruno,Cam Emmanuelle,Pradel RogerORCID

Abstract

AbstractOn the journey to wintering sites, migratory birds usually alternate between flights and stopovers where they rest and refuel. Migration strategies are assumed to differ according to season: a time-minimization pre-breeding migration strategy towards breeding locations, and an energy-minimization post-breeding migration strategy to wintering ones. The duration of flights and stopovers determines the energy requirements and the total duration of the journey. Since migrating birds actually spend most of the time at stopovers, selection to minimize the amount of energy or time spent on migration is very likely to operate on the effectiveness of stopover rest and refueling. Here we address the relative contribution of factors to departure decisions from stopover sites during the post-breeding migration in a long-distance migratory songbird. When capture probability is low it is impossible to assess the variation in body condition over the entire duration of the stopover. To get around this, we use Time Since Arrival (TSA) as a proxy for the changes in the state of individuals during the stopover. We propose that TSA is an integrative proxy for resting, feeding and fattening efficiency. We develop a capture-recapture model to address the relationship between departure probability, estimated TSA, and weather conditions. Using a 20-year dataset from sedge warblers, we show that TSA has a larger effect on departure probability than weather conditions. Low humidity and an increase in atmospheric pressure in the days preceding departure are associated with higher departure probability, but these effects are smaller than that of TSA.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. How Migrants Get There: Migratory Performance and Orientation

2. Reed warbler orientation: initiation of nocturnal migratory flights in relation to visibility of celestial cues at dusk

3. Nocturnal migratory flight initiation in reed warblers Acrocephalus scirpaceus: Effect of wind on orientation and timing of migration;Journal of Avian Biology,2002

4. Alerstam, T. (1990). Bird migration. Cambridge University Press.

5. Migration Distance and Body Condition Influence Shorebird Migration Strategies and Stopover Decisions During Southbound Migration;Frontiers in Ecology and Evolution,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3