Cortical abnormalities and identification for first-episode schizophrenia via high-resolution magnetic resonance imaging

Author:

Liu Lin,Cui Long-BiaoORCID,Wu Xu-Sha,Fei Ning-Bo,Xu Zi-Liang,Wu Di,Xi Yi-Bin,Huang Peng,von Deneen Karen M.,Qi Shun,Zhang Ya-Hong,Wang Hua-Ning,Yin Hong,Qin Wei

Abstract

AbstractIntroEvidence from neuroimaging has implicated abnormal cerebral cortical patterns in schizophrenia. Application of machine learning techniques is required for identifying structural signature reflecting neurobiological substrates of schizophrenia at the individual level. We aimed to detect and develop a method for potential marker to identify schizophrenia via the features of cerebral cortex using high-resolution magnetic resonance imaging (MRI).MethodIn this study, cortical features were measured, including volumetric (cortical thickness, surface area, and gray matter volume) and geometric (mean curvature, metric distortion, and sulcal depth) features. Patients with first-episode schizophrenia (n = 52) and healthy controls (n = 66) were included from the Department of Psychiatry at Xijing Hospital. Multivariate computation was used to examine the abnormalities of cortical features in schizophrenia. Features were selected by least absolute shrinkage and selection operator (LASSO) method. The diagnostic capacity of multi-dimensional neuroanatomical patterns-based classification was evaluated based on diagnostic tests.ResultsMean curvature (left insula and left inferior frontal gyrus), cortical thickness (left fusiform gyrus), and metric distortion (left cuneus and right superior temporal gyrus) revealed both group differences and diagnostic capacity. Area under receiver operating characteristic curve was 0.88, and the sensitivity, specificity, and accuracy of were 94%, 82%, and 88%, respectively. Confirming these findings, similar results were observed in the independent validation. There was a positive association between index score derived from the multi-dimensional patterns and the severity of symptoms (r = 0.40, P < .01) for patients.DiscussionOur findings demonstrate a view of cortical differences with capacity to discriminate between patients with schizophrenia and healthy population. Structural neuroimaging-based measurements hold great promise of paving the road for their clinical utility in schizophrenia.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Gray matter volumes may predict the clinical response to paliperidone palmitate long-acting in acute psychosis: A pilot longitudinal neuroimaging study

2. Classification of spatially unaligned fMRI scans;Neuroimage,2010

3. Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial;Frontiers in Human Neuroscience,2013

4. Schizophrenia

5. Multivariate pattern classification of gray matter pathology in multiple sclerosis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3