A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19)

Author:

Wang Shuai,Kang Bo,Ma Jinlu,Zeng Xianjun,Xiao Mingming,Guo Jia,Cai Mengjiao,Yang Jingyi,Li Yaodong,Meng Xiangfei,Xu Bo

Abstract

AbstractBackgroundThe outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 2.5 million cases of Corona Virus Disease (COVID-19) in the world so far, with that number continuing to grow. To control the spread of the disease, screening large numbers of suspected cases for appropriate quarantine and treatment is a priority. Pathogenic laboratory testing is the gold standard but is time-consuming with significant false negative results. Therefore, alternative diagnostic methods are urgently needed to combat the disease. Based on COVID-19 radiographical changes in CT images, we hypothesized that Artificial Intelligence’s deep learning methods might be able to extract COVID-19’s specific graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control.Methods and FindingsWe collected 1,065 CT images of pathogen-confirmed COVID-19 cases (325 images) along with those previously diagnosed with typical viral pneumonia (740 images). We modified the Inception transfer-learning model to establish the algorithm, followed by internal and external validation. The internal validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic acid test results were negative, 46 were predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%.ConclusionThese results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for timely and accurate COVID-19 diagnosis.Author summaryTo control the spread of the COVID-19, screening large numbers of suspected cases for appropriate quarantine and treatment measures is a priority. Pathogenic laboratory testing is the gold standard but is time-consuming with significant false negative results. Therefore, alternative diagnostic methods are urgently needed to combat the disease. We hypothesized that Artificial Intelligence’s deep learning methods might be able to extract COVID-19’s specific graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time. We collected 1,065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with typical viral pneumonia. We modified the Inception transfer-learning model to establish the algorithm. The internal validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic acid test results were negative, 46 were predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%. Our study represents the first study to apply artificial intelligence to CT images for effectively screening for COVID-19.

Publisher

Cold Spring Harbor Laboratory

Cited by 378 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3