Author:
Wang Shuai,Kang Bo,Ma Jinlu,Zeng Xianjun,Xiao Mingming,Guo Jia,Cai Mengjiao,Yang Jingyi,Li Yaodong,Meng Xiangfei,Xu Bo
Abstract
AbstractBackgroundThe outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 2.5 million cases of Corona Virus Disease (COVID-19) in the world so far, with that number continuing to grow. To control the spread of the disease, screening large numbers of suspected cases for appropriate quarantine and treatment is a priority. Pathogenic laboratory testing is the gold standard but is time-consuming with significant false negative results. Therefore, alternative diagnostic methods are urgently needed to combat the disease. Based on COVID-19 radiographical changes in CT images, we hypothesized that Artificial Intelligence’s deep learning methods might be able to extract COVID-19’s specific graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control.Methods and FindingsWe collected 1,065 CT images of pathogen-confirmed COVID-19 cases (325 images) along with those previously diagnosed with typical viral pneumonia (740 images). We modified the Inception transfer-learning model to establish the algorithm, followed by internal and external validation. The internal validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic acid test results were negative, 46 were predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%.ConclusionThese results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for timely and accurate COVID-19 diagnosis.Author summaryTo control the spread of the COVID-19, screening large numbers of suspected cases for appropriate quarantine and treatment measures is a priority. Pathogenic laboratory testing is the gold standard but is time-consuming with significant false negative results. Therefore, alternative diagnostic methods are urgently needed to combat the disease. We hypothesized that Artificial Intelligence’s deep learning methods might be able to extract COVID-19’s specific graphical features and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time. We collected 1,065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with typical viral pneumonia. We modified the Inception transfer-learning model to establish the algorithm. The internal validation achieved a total accuracy of 89.5% with specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images that first two nucleic acid test results were negative, 46 were predicted as COVID-19 positive by the algorithm, with the accuracy of 85.2%. Our study represents the first study to apply artificial intelligence to CT images for effectively screening for COVID-19.
Publisher
Cold Spring Harbor Laboratory
Reference19 articles.
1. Zhou F , Yu T , Du R , Fan G , Liu Y , Liu Z , et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. Mar. 2020.
2. Velavan T , Meyer C. The COVID-19 epidemic. Trop Med Int Health, Mar 2020.
3. Wang D , Hu B , Hu C , Zhu F , Liu X , Zhang J , et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020
4. Chen N , Zhou M , Dong X , Qu J , Gong F , Han Y , et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020.
5. Li Q , Guan X , Wu P , Wang X , Zhou L , Tong Y , et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. Mar. 2020.
Cited by
385 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献