Probing SWATH-MS as a tool for proteome level quantification in a non-model fish

Author:

Monroe Alison A.ORCID,Zhang HuomingORCID,Schunter CeliaORCID,Ravasi TimothyORCID

Abstract

AbstractQuantitative proteomics via mass spectrometry can provide valuable insight into molecular and phenotypic characteristics of a living system. Recent mass spectrometry developments include data-independent acquisition (SWATH/DIA-MS), an accurate, sensitive, and reproducible method for analyzing the whole proteome. The main requirement for this method is the creation of a comprehensive spectral library. New technologies have emerged producing larger and more accurate species-specific libraries leading to a progressive collection of proteome references for multiple molecular model species. Here, for the first time, we set out to compare different spectral library constructions using multiple tissues from a coral reef fish to demonstrate its value and feasibility for non-model organisms. We created a large spectral library composed of 12,553 protein groups from liver and brain tissues. Via identification of differentially expressed proteins (DEPs) under fish exposure to environmental stressors we validated the application and usefulness of these different spectral libraries. Successful identification of significant DEPs from different environmental exposures occurred using the library with a combination of DIA+DDA data as well as both tissue types. Further analysis revealed expected patterns of significantly upregulated heat shock proteins in a dual condition of ocean warming and acidification indicating the biological accuracy and relevance of the method. This study provides the first reference spectral library for a coral reef fish and for a non-model organism. It represents a useful guide for the future building of accurate spectral library references in non-model organisms allowing the discovery of ecologically relevant changes in the proteome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3