Expressions for Bayesian confidence of drift diffusion observers in dynamic stimuli tasks

Author:

Calder-Travis JoshuaORCID,Bogacz RafalORCID,Yeung NickORCID

Abstract

AbstractMuch work has explored the possibility that the drift diffusion model, a model of response times and choices, could be extended to account for confidence reports. Many methods for making predictions from such models exist, although these methods either assume that stimuli are static over the course of a trial, or are computationally expensive, making it difficult to capitalise on trial-by-trial variability in dynamic stimuli. Using the framework of the drift diffusion model with time-dependent thresholds, and the idea of a Bayesian confidence readout, we derive expressions for the probability distribution over confidence reports. In line with current models of confidence, the derivations allow for the accumulation of “pipeline” evidence which has been received but not processed by the time of response, the effect of drift rate variability, and metacognitive noise. The expressions are valid for stimuli which change over the course of a trial with normally distributed fluctuations in the evidence they provide. A number of approximations are made to arrive at the final expressions, and we test all approximations via simulation. The derived expressions only contain a small number of standard functions, and only require evaluating once per trial, making trial-by-trial modelling of confidence data in dynamic stimuli tasks more feasible. We conclude by using the expressions to gain insight into the confidence of optimal observers, and empirically observed patterns.

Publisher

Cold Spring Harbor Laboratory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3