Thioesterase Superfamily Member 1 Undergoes Stimulus-coupled Reorganization to Regulate Metabolism

Author:

Li Yue,Imai Norihiro,Goyal Samaksh,Nicholls Hayley T.,Krisko Tibor I.,Baqai Mahnoor,Ang Lay-Hong,Tillman Matthew C.,Ortlund Eric A.ORCID,Cohen David E.,Hagen Susan J.ORCID

Abstract

AbstractIn brown adipose tissue, cold exposure promotes thermogenesis, in large part by increasing mitochondrial β-oxidation of lipid droplet-derived fatty acids. This process is suppressed by thioesterase superfamily member 1 (Them1), a long chain fatty acyl-CoA thioesterase that is highly upregulated by cold ambient temperatures. Them1 reduces fatty acid availability for β-oxidation in mitochondria and limits thermogenesis by cellular mechanisms that are not well defined. We show that Them1 regulates metabolism by undergoing marked intracellular conformational changes that occur in response to β-adrenergic stimulation. Mechanistically, Them1 formed puncta that were localized near LD and mitochondria in an immortalized brown adipose cell line. In response to stimulation by norepinephrine, Them1 was phosphorylated by PKCβ at S15, which specifically inhibited puncta formation and resulted in a diffuse intracellular localization. This change in Them1 localization also occurred after stimulation in vivo. Puncta formation activated Them1 metabolic activity in vitro, as evidenced by suppression of oxygen consumption following β-adrenergic stimulation. We show by correlative light and electron microscopy that puncta are biomolecular condensates (also known as membraneless organelles) that typically form by phase separation. Them1 contains one intrinsically disordered region at the N-terminus with multiple interacting motifs that is frequently observed in phase-separating proteins. Phosphorylation, which is known to disrupt phase separation and aggregation, results in a diffuse Them1 localization. Our data thus establish that Them1 forms intracellular biomolecular condensates that limit fatty acid oxidation and suppress thermogenesis. During a period of energy demand, the condensates are disrupted by phosphorylation to allow for maximal thermogenesis. The stimulus-coupled reorganization of Them1 thus provides fine-tuning of thermogenesis and energy expenditure.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3