Author:
Chen Jun,Wu Lianlian,Zhang Jun,Zhang Liang,Gong Dexin,Zhao Yilin,Hu Shan,Wang Yonggui,Hu Xiao,Zheng Biqing,Zhang Kuo,Wu Huiling,Dong Zehua,Xu Youming,Zhu Yijie,Chen Xi,Yu Lilei,Yu Honggang
Abstract
AbstractBackgroundComputed tomography (CT) is the preferred imaging method for diagnosing 2019 novel coronavirus (COVID19) pneumonia. Our research aimed to construct a system based on deep learning for detecting COVID-19 pneumonia on high resolution CT, relieve working pressure of radiologists and contribute to the control of the epidemic.MethodsFor model development and validation, 46,096 anonymous images from 106 admitted patients, including 51 patients of laboratory confirmed COVID-19 pneumonia and 55 control patients of other diseases in Renmin Hospital of Wuhan University (Wuhan, Hubei province, China) were retrospectively collected and processed. Twenty-seven consecutive patients undergoing CT scans in Feb, 5, 2020 in Renmin Hospital of Wuhan University were prospectively collected to evaluate and compare the efficiency of radiologists against 2019-CoV pneumonia with that of the model.FindingsThe model achieved a per-patient sensitivity of 100%, specificity of 93.55%, accuracy of 95.24%, PPV of 84.62%, and NPV of 100%; a per-image sensitivity of 94.34%, specificity of 99.16%, accuracy of 98.85%, PPV of 88.37%, and NPV of 99.61% in retrospective dataset. For 27 prospective patients, the model achieved a comparable performance to that of expert radiologist. With the assistance of the model, the reading time of radiologists was greatly decreased by 65%.ConclusionThe deep learning model showed a comparable performance with expert radiologist, and greatly improve the efficiency of radiologists in clinical practice. It holds great potential to relieve the pressure of frontline radiologists, improve early diagnosis, isolation and treatment, and thus contribute to the control of the epidemic.
Publisher
Cold Spring Harbor Laboratory
Cited by
150 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献