A Safe Harbor-Targeted CRISPR/Cas9 Homology Independent Targeted Integration (HITI) System for Multi-Modality Reporter Gene-Based Cell Tracking

Author:

Kelly John JORCID,Saee-Marand Moe,Nyström Nivin N,Chen Yuanxin,Evans Melissa M,Hamilton Amanda M,Ronald John A

Abstract

AbstractImaging reporter genes can provide valuable, longitudinal information on the biodistribution, growth and survival of engineered cells in preclinical models and patients. A translational bottleneck to using reporter genes in patients is the necessity to engineer cells with randomly-integrating vectors. CRISPR/Cas9 targeted knock-in of reporter genes at a genomic safe harbor locus such as adeno-associated virus integration site 1 (AAVS1) may overcome these safety concerns. Here, we built Homology Independent Targeted Integration (HITI) CRISPR/Cas9 minicircle donors for precise AAVS1-targeted simultaneous knock-in of fluorescence, bioluminescence, and MRI (Oatp1a1) reporter genes. Our results showed greater knock-in efficiency at the AAVS1 site using HITI vectors compared to homology-directed repair donor vectors. Characterization of select HITI clones demonstrated functional fluorescence and bioluminescence reporter activity as well as significantly increased Oatp1a1-mediated uptake of the clinically-approved MRI agent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid. As few as 106Oatp1a1-expressing cells in a 50 µl subcutaneous injection could be detectedin vivowith contrast-enhanced MRI. Contrast-enhanced MRI also improved the conspicuity of both sub-cutaneous and metastatic Oatp1a1-expressing tumours prior to them being palpable or even readily visible on pre-contrast images. Our work demonstrates the first CRISPR/Cas9 HITI system for knock-in of large DNA donor constructs at a safe harbor locus, enabling multi-modal longitudinalin vivoimaging of cells. This work lays the foundation for safer, non-viral reporter gene tracking of multiple cell types.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3