Abstract
1AbstractPhytoplasmas are pathogenic bacteria that reprogram plant host development in order to attract their insect vectors to disseminate. Previous studies have characterized a few different phytoplasma effector proteins that supress specific transcription factors. However, these are only a small fraction of the potential effectors used by phytoplasmas, meaning that the molecular mechanisms through which phytoplasmas manipulate their hosts are largely uncharacterized. To obtain further insights into the phytoplasma infection mechanisms, we generated a protein-protein interaction network between a broad set of phytoplasma effectors and a large collection ofArabidopsis thalianatranscription factors and transcriptional regulators. We found widespread, but unique, interactions with host transcription factors by phytoplasma effectors, especially those related to developmental processes. In particular, many unrelated effectors target TCP transcription factors, which play roles in plant development and immunity. Comparison with other host-pathogen protein interaction networks shows that phytoplasma effectors have unusual targets, and indicates that phytoplasmas have evolved a unique and unusual infection strategy. This study provides a rich and solid data source that can be used to predict functional effects of individual effectors and as a guide for detailed studies of individual effectors in the future, as well as insights into the underlying molecular mechanisms of phytoplasma infection.2Significance statementThis work shows that the effectors of phytoplasma, a bacterial plant pathogen, show pervasive interactions with development-related host transcription factors, providing a way to take over plant growth and development in favor of the pathogen and its insect vector. The obtained comprehensive protein interaction network and showcase of the potential biological consequences of a selected effector advance our understanding of phytoplasma-host interactions and provide guidance for further study.
Publisher
Cold Spring Harbor Laboratory
Reference52 articles.
1. ProtTest: selection of best-fit models of protein evolution
2. AY-WB Phytoplasma Secretes a Protein That Targets Plant Cell Nuclei
3. DREME: motif discovery in transcription factor ChIP-seq data
4. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), pages 289–300.
5. Yeast two-hybrid, a powerful tool for systems biology;International journal of molecular sciences,2009
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献