The effects of microcystin-LR in Oryza sativa root cells: F-actin as a new target of cyanobacterial toxicity

Author:

Pappas D.,Gkelis S.ORCID,Panteris E.ORCID

Abstract

ABSTRACTMicrocystins are toxins produced by cyanobacteria, notorious for negatively affecting a wide range of living organisms, among which several plant species. Although microtubules are a well-established target of microcystin toxicity, its effect on filamentous actin (F-actin) in plant cells has not been studied yet.The effects of microcystin-LR (MC-LR) and the extract of a microcystin-producing freshwater cyanobacterial strain (Microcystis flos-aquae TAU-MAC 1510) on the cytoskeleton (F-actin and microtubules) of Oryza sativa (rice) root cells, were studied by light, confocal, and transmission electron microscopy. Considering the role of F-actin in endomembrane system distribution, the endoplasmic reticulum and the Golgi apparatus in extract-treated cells were also examined.F-actin in both MC-LR- and extract-treated meristematic and differentiating root cells exhibited time-dependent alterations, ranging from disorientation and bundling to the formation of ring-like structures, eventually resulting to a collapse of the F-actin network at longer treatments. Disorganization and eventual depolymerization of microtubules, as well as abnormal chromatin condensation were observed following treatment with the extract, effects which could be attributed to microcystins and other bioactive compounds. Moreover, cell cycle progression was inhibited in extract-treated roots, specifically affecting the mitotic events. As a consequence of F-actin network disorganization, endoplasmic reticulum elements appeared stacked and diminished, while Golgi dictyosomes appeared aggregated.These results support that F-actin is a prominent target of MC-LR, both in pure form and as an extract ingredient. Endomembrane system alterations can also be attributed to the effects of cyanobacterial bioactive compounds (including microcystins) on F-actin cytoskeleton.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3