Inferring Models with Alternative Stable States from Independent Observations

Author:

Tekwa Edward W.ORCID,Krkošek Martin,Pinsky Malin L.ORCID

Abstract

AbstractMultiple attractors and alternative stable states are defining features of scientific theories in ecology and evolution, implying that abrupt regime shifts can occur and that outcomes can be hard to reverse. Here we describe a statistical inferential framework that uses independent, noisy observations with low temporal resolution to support or refute multiple attractor process models. The key is using initial conditions to choose among a finite number of expected outcomes using a nonstandard finite mixture methodology. We apply the framework to contemporary issues in social-ecological systems, coral ecosystems, and chaotic systems, showing that incorporating history allows us to statistically infer process models with alternative stable states while minimizing false positives. Further, in the presence of disturbances and oscillations, alternative stable states can help rather than hamper inference. The ability to infer models with alternative stable states across natural systems can help accelerate scientific discoveries, change how we manage ecosystems and societies, and place modern theories on firmer empirical ground.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3