Abelson-induced phosphorylation of TACC3 modulates its interaction with microtubules and affects its impact on axon outgrowth and guidance

Author:

Erdogan Burcu,St. Clair Riley M.,Cammarata Garrett M.,Zaccaro Timothy,Ballif Bryan A.,Lowery Laura Anne

Abstract

AbstractAxon guidance is a critical process in forming the connections between a neuron and its target. The growth cone steers the growing axon towards the appropriate direction by integrating extracellular guidance cues and initiating intracellular signal transduction pathways downstream of these cues. The growth cone generates these responses by remodeling its cytoskeletal components. Regulation of microtubule dynamics within the growth cone is important for making guidance decisions. TACC3, as a microtubule plus-end binding protein, modulates microtubule dynamics during axon outgrowth and guidance. We have previously shown that embryos depleted of TACC3 displayed spinal cord axon guidance defects, while TACC3-overexpressing spinal neurons showed increased resistance to Slit2-induced growth cone collapse. Here, in order to investigate the mechanism behind TACC3-mediated axon guidance, we studied the importance of tyrosine phosphorylation induced by Abelson tyrosine kinase. We find that the phosphorylatable tyrosines within the TACC domain are important for the microtubule plus-end tracking behavior of TACC3. Moreover, TACC domain phosphorylation impacts axon outgrowth and guidance, and it also regulates microtubule extension into the growth cone periphery. Together, our results suggest that phosphorylation of TACC3 is a key regulatory mechanism by which TACC3 controls axon outgrowth and pathfinding decisions of neurons during embryonic development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3