Non-photopic and photopic visual cycles differentially regulate immediate, early and late-phases of cone photoreceptor-mediated vision

Author:

Ward Rebecca,Kaylor Joanna J.,Cobice Diego F.,Pepe Dionissia A.,McGarrigle Eoghan M.,Brockerhoff Susan E.,Hurley James B.,Travis Gabriel H.,Kennedy Breandán N.ORCID

Abstract

AbstractCone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters (atRE) to 11-cis-retinol (11cROL) is mediated by the retinoid isomerohydrolase Rpe65. An alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, whereas emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaption displayed significantly attenuated immediate photopic vision concomitantly with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 minutes of light, early photopic vision recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde (9cRAL) supplementation. Genetic knockout of degs1 or retinaldehyde-binding protein 1b (rlbp1b) revealed that neither are required for photopic vision in zebrafish. Our findings define the molecular and temporal requirements of the non-photopic and photopic visual cycles for mediating vision in bright light.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3