Author:
Icyuz Mert,Fitch Michael P.,Zhang Fang,Challa Anil K.,Sun Liou Y.
Abstract
AbstractOur previous study demonstrated that the loss of growth hormone releasing hormone (GHRH) results in increased lifespan and improved metabolic homeostasis in the mouse model generated by classical embryonic stem cell based gene-targeting method. In this study, we targeted the GHRH gene using the CRISPR/Cas9 technology to avoid passenger alleles/mutations and performed in-depth physiological and metabolic characterization. In agreement with our previous observation, male and female GHRH-/- mice have significantly reduced body weight and enhanced insulin sensitivity when compared to wild type littermates. Dual-energy X-ray absorptiometry showed that there were significant decreases in lean mass, bone mineral content and density, and a dramatic increase in fat mass of GHRH-/- mice when compared to wild type littermates. Indirect calorimetry measurements including oxygen consumption, carbon dioxide production and energy expenditure were dramatically reduced in GHRH-/- mice compared to wild type mice. Respiratory exchange ratio was significantly lower in GHRH-/- mice during the light cycle, but not during the dark cycle, indicating a circadian related metabolic shift towards fat utilization in the growth hormone deficient mice. The novel CRISPR/Cas9 GHRH-/- mice are exhibiting the consistent and unique physiological and metabolic characteristics, which might mediate the longevity effects of growth hormone deficiency in mice.
Publisher
Cold Spring Harbor Laboratory