Anti-cancer Drug Synergy Prediction in Understudied Tissues using Transfer Learning

Author:

Kim Yejin,Zheng Shuyu,Tang Jing,Zheng W. Jim,Li Zhao,Jiang Xiaoqian

Abstract

AbstractMotivationExploring an exponentially increasing yet more promising space, high-throughput combinatorial drug screening has advantages in identifying cancer treatment options with higher efficacy without degradation in terms of safety. A key challenge is that accumulated number of observations in in-vitro drug responses varies greatly among different cancer types, where some tissues (such as bone and prostate) are understudied than the others. Thus, we aim to develop a drug synergy prediction model for understudied data-poor tissues as overcoming data scarcity problem.ResultsWe collected a comprehensive set of genetic, molecular, phenotypic features for cancer cell lines from six different databases. We developed a drug synergy prediction model based on deep neural networks to integrate multi-modal input and utilize transfer learning from data-rich tissues to data-poor tissues. We showed improved accuracy in predicting drug synergy in understudied tissues without enough drug combination screening data nor after-treatment transcriptome. Our synergy prediction model can be used to rank synergistic drug combinations in understudied tissues and thus help prioritizing future in-vitro experiments.Availability and ImplementationOur algorithm will be publicly available via https://github.com/yejinjkim/drug-synergy-prediction

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Systematic Review of Applications of Machine Learning in Cancer Prediction and Diagnosis;Archives of Computational Methods in Engineering;2021-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3