New insights into Trypanosoma cruzi evolution and genotyping based on system-wide protein expression profiles (PhyloQuant)

Author:

Mule Simon Ngao,da Costa Martins Andrè Guillherme,Rosa-Fernandes Livia,de Oliveira Gilberto Santos,Rodrigues Carla Monadeli,Quina Daniel,Rosein Graziella E.,Teixeira Marta Maria Geraldes,Palmisano GiuseppeORCID

Abstract

AbstractThe etiological agent of Chagas disease, Trypanosoma cruzi, is subdivided into seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution justifies the concerted efforts towards understanding the population structure of T. cruzi strains. In this study, we introduce a novel approach termed ‘phyloquant’ to infer the evolutionary relationships and assignment of T. cruzi strains to their DTUs based on differential protein expression profiles evidenced by bottom up large scale mass spectrometry-based quantitative proteomic features. Mass spectrometry features analyzed using parsimony (MS1, iBAQ and LFQ) showed a close correlation between protein expression and T. cruzi DTUs and closely related trypanosome species. Although alternative topologies with minor differences between the three MS features analyzed were demonstrated, we show congruence to well accepted evolutionary relationships of T. cruzi DTUs; in all analyses TcI and Tcbat were sister groups, and the parental nature of genotype TcII and the hybrid genotypes TcV/TcVI were corroborated. Character mapping of genetic distance matrices based on phylogenetics and phyloquant clustering showed statistically significant correlations. We propose the first quantitative shotgun proteomics approach as a complement strategy to the genetic-based assignment of T. cruzi strains to DTUs and evolutionary inferences. Moreover, this approach allows for the identification of differentially regulated and strain/DTU/species-specific proteins, with potential application in the identification of strain/DTU specific biomarkers and candidate therapeutic targets. In addition, the correlation between multi-gene protein expression and divergence of trypanosome species was evaluated, adding another level to understand the genetic subdivisions among T. cruzi DTUs.

Publisher

Cold Spring Harbor Laboratory

Reference104 articles.

1. Chagas disease;Lancet (London, England),2018

2. Chagas disease in Latin America: an epidemiological update based on 2010 estimates;Releve epidemiologique hebdomadaire,2015

3. [First tests on the accidental transmission of Chagas disease to man by blood transfusion];Revista paulista de medicina,1952

4. Chagas’ disease and blood transfusion;Progress in clinical and biological research,1985

5. Prevention of transfusional Trypanosoma cruzi infection in Latin America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3