Abstract
AbstractThe temporal pole (TP) is an associative cortical region required for complex cognitive functions such as social and emotional cognition. However, functional mapping of the TP with functional magnetic resonance imaging is technically challenging and thus understanding of its interaction with other key emotional circuitry, such as the amygdala, remain elusive. We exploited the unique advantages of stereo-electroencephalography (SEEG) to assess the responses of the TP and the amygdala during the perception of emotionally salient stimuli of pictures, music and movies. These stimuli consistently elicited high gamma responses (70-140 Hz) in both the TP and the amygdala, accompanied by functional connectivity in the low frequency range (2-12 Hz). Computational analyses suggested the TP driving this effect in the theta-alpha frequency range and which was modulated by the emotional salience of the stimuli. Of note, cross-frequency analysis indicated the phase of theta-alpha oscillations in the TP modulated the amplitude of high gamma activity in the amygdala. These results were reproducible with three types of stimuli including naturalistic stimuli suggesting a hierarchical influence of the TP over the amygdala in non-threatening stimuli.
Publisher
Cold Spring Harbor Laboratory