Abstract
ABSTRACTUnderstanding molecular mechanisms which underlie transport of cesium (Cs+) in plants is important to limit entry of its radioisotopes from contaminated area to the food chain. The potentially toxic element Cs+, which is not involved in any biological process, is chemically closed to the macronutrient potassium (K+). Among the multiple K+ carriers, the high-affinity K+ transporters family HAK/KT/KUP is thought to be relevant in mediating opportunistic Cs+ transport. On the 13 KUP identified in Arabidopsis thaliana, only HAK5, the major contributor to root K+ acquisition under low K+ supply, has been functionally demonstrated to be involved in Cs+ uptake in planta. In the present study, we showed that accumulation of Cs+ increased by up to 30% in two A. thaliana mutant lines lacking KUP9 and grown under low K+ supply. Since further experiments revealed that Cs+ release from contaminated plants to the external medium is proportionally lower in the two kup9 mutants, we proposed that KUP9 disruption could impair Cs+ efflux. By contrast, we did not measure significant impairment of K+ status in kup9 mutants suggesting that KUP9 disruption does not alter substantially K+ transport in experimental conditions used here. Putative primary role of KUP9 in plants is further discussed.
Publisher
Cold Spring Harbor Laboratory
Reference52 articles.
1. Contribution of KUPs to potassium and cesium accumulation appears complementary in Arabidopsis;Plant Signaling & Behavior,2019
2. Intracellular Imaging of Cesium Distribution in Arabidopsis Using Cesium Green;ACS applied materials & interfaces,2014
3. Root K+ Acquisition in Plants: The Arabidopsis thaliana Model
4. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression;Frontiers in Plant Science,2014
5. Borrowed alleles and convergence in serpentine adaptation