Bent DNA bows as amplifiers and biosensors for detecting DNA-interacting salts and molecules

Author:

Freeland Jack,Zhang Lihua,Wang Shih-Ting,Ruiz Mason,Wang Yong

Abstract

AbstractDue to the central role of DNA, its interactions with inorganic salts and small organic molecules are important for understanding various fundamental cellular processes in living systems, deciphering the mechanism of many diseases related to DNA damages, and discovering or designing inhibitors and drugs targeting DNA. However, there is still a need for improved sensitivity to detect these interactions, especially in situations where expensive sophisticated equipment is not available. Here we report our development and demonstration of bent DNA bows for amplifying, sensing, and detecting the interactions of 14 inorganic salts and small organic molecules with DNA. With the bent DNA bows, these interactions were easily visualized and quantified in gel electrophoresis, which were difficult to measure without bending. In addition, the strength of the interactions of DNA with the various salts/molecules were quantified using the modified Hill equation. This work highlights the amplification effects of the bending elastic energy stored in the DNA bows and the potential use of the DNA bows for quantitatively measuring DNA interactions with small molecules as simple economic methods; it may also pave the way for exploiting the bent DNA bows for other applications such as monitoring water quality and screening DNA-targeting molecules and drugs.

Publisher

Cold Spring Harbor Laboratory

Reference86 articles.

1. Understanding Nucleic Acid–Ion Interactions

2. Wanunu, M. & Tor, Y. Methods for Studying Nucleic Acid/Drug Interactions. (CRC Press, 2018).

3. DNA aggregation induced by Mg2+ ions under different conditions;J Mol Recognit,2018

4. Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility;J Mater Sci Mater Med,2017

5. Ions and RNA Folding

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3