Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury

Author:

Ettou Sandrine,Jung Youngsook L.,Miyoshi Tomoya,Jain Dhawal,Hiratsuka Ken,Schumacher Valerie,Taglienti Mary E.,Morizane Ryuji,Park Peter J.,Kreidberg Jordan A.

Abstract

ABSTRACTIn the context of human disease, the mechanisms whereby transcription factors reprogram gene expression in response to injury are not well understood. This is particularly true in kidney podocytes, injury to which is the common and initial event in many processes that lead End Stage Kidney Disease. WT1 is a master regulator of gene expression in podocytes, binding nearly all genes known to be crucial for maintenance of the glomerular filtration barrier. Here, using purified populations of podocytes and glomeruli, we investigated WT1-mediated transcriptional reprogramming during the course of podocyte injury. Using the Adriamycin murine model of Focal Segmental Glomerulosclerosis, we discovered that podocyte injury led to increased intensity of WT1 binding and to the acquisition of new WT1 binding sites, both at previously identified target genes and at newly bound target genes, providing mechanistic insight on the transcriptional response to injury. We also observed a previously unrecognized transient increase in expression of WT1 target genes in both mice and human kidney organoids. Together, these features appear to constitute an attempt to repair the glomerular filtration barrier after podocyte injury. At later stages of injury, when proteinuria became severe, there was greatly decreased WT1 binding to most target genes. Furthermore, WT1 appeared to be required to maintain active chromatin marks at its target genes. These active marks were converted to repressive marks after loss of WT1 or Adriamycin-induced injury. This response to injury suggests that there may be a potential window of opportunity for repairing podocyte injury as a treatment for glomerular disease in humans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3