Abstract
AbstractThe recent outbreak of a novel coronavirus SARS-CoV-2 (also known as 2019-nCoV) threatens global health, given serious cause for concern. SARS-CoV-2 is a human-to-human pathogen that caused fever, severe respiratory disease and pneumonia (known as COVID-19). By press time, more than 70,000 infected people had been confirmed worldwide. SARS-CoV-2 is very similar to the severe acute respiratory syndrome (SARS) coronavirus broke out 17 years ago. However, it has increased transmissibility as compared with the SARS-CoV, e.g. very often infected individuals without any symptoms could still transfer the virus to others. It is thus urgent to develop a rapid, accurate and onsite diagnosis methods in order to effectively identify these early infects, treat them on time and control the disease spreading. Here we developed an isothermal LAMP based method-iLACO (isothermal LAMP based method for COVID-19) to amplify a fragment of the ORF1ab gene using 6 primers. We assured the species-specificity of iLACO by comparing the sequences of 11 related viruses by BLAST (including 7 similar coronaviruses, 2 influenza viruses and 2 normal coronaviruses). The sensitivity is comparable to Taqman based qPCR detection method, detecting synthesized RNA equivalent to 10 copies of 2019-nCoV virus. Reaction time varied from 15-40 minutes, depending on the loading of virus in the collected samples. The accuracy, simplicity and versatility of the new developed method suggests that iLACO assays can be conveniently applied with for 2019-nCoV threat control, even in those cases where specialized molecular biology equipment is not available.
Publisher
Cold Spring Harbor Laboratory
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献