Temperature, but not excess of glycogen, regulatepost-mortemAMPK activity in muscle of steer carcasses

Author:

Strobel P,Galaz A,Villaroel-Espíndola F,Apaoblaza A,Slebe JC,Jerez-Timaure N,Gallo C,Ramírez-Reveco AORCID

Abstract

AbstractPost-mortemmuscle temperature affects the rate of decline in pH in a linear manner from 37.5 °C down near 0 °C, and this pH decline is correlated with the enzymatic degradation of glycogen to lactate. This transformation occurs in an anaerobic context that includes the metabolic splice between glycogenolysis and glycolysis; and both processes are strongly upregulated by AMPK enzyme. In this study we reported changes (0.5 h and 24 h post-mortem) in muscle glycogen concentration, lactate and AMPK activity from 12 samples ofLongissimus dorsifrom 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24 h post-mortem. Moreover, we evaluated changes in AMPK activity in samples from both categories incubated at 37, 25, 17 and 5 °C and supplemented with exogenous glycogen. Finally, we analysed if there were structural differences between polymers from both categories. Our analyses show that enzymatic AMPK activity was significantly higher at 17 °C than at 37 °C or 25 °C (p<0.0001 and p<0.05 in samples from normal and high pH categories, respectively), and was near zero at 5 °C. On the other hand, AMPK activity did not change in relation with excess glycogen and we did not detect structural differences in the polymers present in samples from both categories. We concluded that post-mortem AMPK activity level is highly sensitive to temperature and not at in vitro changes in glycogen concentration. Their results suggest that that normal levels ofpre-mortemmuscle glycogen and an adequate cooling managing of carcasses are relevant to let an efficient glycogenolytic/glycolytic flow required for lactate accumulation and pH decline, trough ofpost-mortemAMPK signalling pathway.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3