Regulatory architecture of the RCA gene cluster captures an intragenic TAD boundary, CTCF-mediated chromatin looping and a long-range intergenic enhancer

Author:

Cheng JessicaORCID,Clayton Joshua S.,Acemel Rafael D.,Zheng Ye,Taylor Rhonda L.,Keleş SündüzORCID,Franke Martin,Boackle Susan A.,Harley John B.,Quail Elizabeth,Gómez-Skarmeta José L.,Ulgiati Daniela

Abstract

ABSTRACTThe Regulators of Complement Activation (RCA) gene cluster comprises several tandemly arranged genes with shared functions within the immune system. RCA members, such as complement receptor 2 (CR2), are well-established susceptibility genes in complex autoimmune diseases. Altered expression of RCA genes has been demonstrated at both the functional and genetic level, but the mechanisms underlying their regulation are not fully characterised. We aimed to investigate the structural organisation of the RCA gene cluster to identify key regulatory elements that influence the expression of CR2 and other genes in this immunomodulatory region. Using 4C, we captured extensive CTCF-mediated chromatin looping across the RCA gene cluster in B cells and showed these were organised into two topologically associated domains (TADs). Interestingly, an inter-TAD boundary was located within the CR1 gene at a well-characterised segmental duplication. Additionally, we mapped numerous gene-gene and gene-enhancer interactions across the region, revealing extensive co-regulation. Importantly, we identified an intergenic enhancer and functionally demonstrated this element upregulates two RCA members (CR2 and CD55) in B cells. We have uncovered novel, long-range mechanisms whereby autoimmune disease susceptibility may be influenced by genetic variants, thus highlighting the important contribution of chromatin topology to gene regulation and complex genetic disease.SIGNIFICANCEThe complement system is a complex network of protein effectors and regulators that play a key role in immunity. Several regulators of complement response are clustered within Regulators of Complement Activation (RCA) gene family. Its members are all functionally, structurally, and genetically related. However, the functional relevance of this close gene organisation is unknown. We show that the clustering of the RCA members is due to shared long-range regulatory elements and physical chromatin looping. We also reveal that the RCA genes are divided into two adjacent chromatin domains and a domain boundary falls within the body of an expressed gene (CR1). Overall, our findings in the RCA cluster offer insights into their evolution, biology and roles in disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3