The influence of image masking on object representations during rapid serial visual presentation

Author:

Robinson Amanda K.ORCID,Grootswagers TijlORCID,Carlson Thomas A.ORCID

Abstract

AbstractRapid image presentations combined with time-resolved multivariate analysis methods of EEG or MEG (rapid-MVPA) offer unique potential in assessing the temporal limitations of the human visual system. Recent work has shown that multiple visual objects presented sequentially can be simultaneously decoded from M/EEG recordings. Interestingly, object representations reached higher stages of processing for slower image presentation rates compared to fast rates. This fast rate attenuation is probably caused by forward and backward masking from the other images in the stream. Two factors that are likely to influence masking during rapid streams are stimulus duration and stimulus onset asynchrony (SOA). Here, we disentangle these effects by studying the emerging neural representation of visual objects using rapid-MVPA while independently manipulating stimulus duration and SOA. Our results show that longer SOAs enhance the decodability of neural representations, regardless of stimulus presentation duration, suggesting that subsequent images act as effective backward masks. In contrast, image duration does not appear to have a graded influence on object representations. Interestingly, however, decodability was improved when there was a gap between subsequent images, indicating that an abrupt onset or offset of an image enhances its representation. Our study yields insight into the dynamics of object processing in rapid streams, paving the way for future work using this promising approach.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3