Dynamic Laser Speckle Imaging

Author:

Postnov Dmitry D.ORCID,Tang Jianbo,Erdener Sefik Evren,Kılıç Kıvılcım,Boas David A.

Abstract

ABSTRACTUtilizing a high-speed camera and recording back-scattered laser light at more than 20,000 frames per second, we introduce the first wide-field dynamic laser speckle imaging (DLSI) in which we are able to quantify the laser speckleintensity temporal auto-correlation function g2(τ) for every pixel individually to obtain a quantitative image of the dynamics of the light scattering particles in the sample. The ability to directly and quantitatively measure the intensity auto-correlation function allows us to solve the problem of how to quantitatively interpret data measured by laser speckle contrast imaging (LSCI), multi-exposure laser speckle imaging (MESI) and laser Doppler flowmetry (LDF). The intensity auto-correlation function is related to the field temporal auto-correlation function g1(τ), which has been quantitatively related to the dynamics of the light scattering particles including flowing red blood cells. The form of g1(τ) depends on the amount of light scattering (i.e. single or multiple scattering) and the type of particle motion (i.e. ordered or unordered). Although these forms of the field correlation functions have been established for over 30 years, there is no agreement nor experimental support on what scattering and motion regimes are relevant for the varied biomedical applications. We thus apply DLSI to image cerebral blood flow in mouse through a cranial window and show that the generally accepted form of g1(τ), is applicable only to visible surface vessels of a specific size (20 – 200μm). We demonstrate that for flow in smaller vessels and in parenchymal regions that the proper g1(τ) form corresponds with multiple scattering light and unordered motion which was never considered to be relevant for these techniques. We show that the wrong assumption for the field auto-correlation model results in a severe underestimation of flow changes when measuring blood flow changes during ischemic stroke. Finally, we describe how DLSI can be integrated with other laser speckle methods to guide model selection, or how it can be used by itself as a quantitative blood flow imaging technique.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3