Visual-olfactory integration in the human disease vector mosquito, Aedes aegypti

Author:

Vinauger Clément,Breugel Floris Van,Locke Lauren T.,Tobin Kennedy K.S.,Dickinson Michael H.,Fairhall Adrienne,Akbari Omar S.,Riffell Jeffrey A.

Abstract

SummaryMosquitoes rely on the integration of multiple sensory cues, including olfactory, visual, and thermal stimuli, to detect, identify and locate their hosts [1–4]. Although we increasingly know more about the role of chemosensory behaviours in mediating mosquito-host interactions [1], the role of visual cues remains comparatively less studied [3], and how the combination of olfactory and visual information is integrated in the mosquito brain remains unknown. In the present study, we used a tethered-flight LED arena, which allowed for quantitative control over the stimuli, to show that CO2 exposure affects target-tracking responses, but not responses to large-field visual stimuli. In addition, we show that CO2 modulates behavioural responses to visual objects in a time-dependent manner. To gain insight into the neural basis of this olfactory and visual coupling, we conducted two-photon microscopy experiments in a new GCaMP6s-expressing mosquito line. Imaging revealed that the majority of ROIs in the lobula region of the optic lobe exhibited strong responses to small-field stimuli, but showed little response to a large-field stimulus. Approximately 20% of the neurons we imaged were modulated when an attractive odour preceded the visual stimulus; these same neurons also elicited a small response when the odour was presented alone. By contrast, imaging in the antennal lobe revealed no modulation when visual stimuli were presented before or after the olfactory stimulus. Together, our results are the first to reveal the dynamics of olfactory modulation in visually evoked behaviours of mosquitoes, and suggest that coupling between these sensory systems is asymmetrical and time-dependent.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3