Author:
Karna Shibendra Kumar Lal,Lone Bilal Ahmad,Ahmad Faiz,Shahi Nerina,Pokharel Yuba Raj
Abstract
AbstractBackgroundBreast cancer is most common cancer and accounts for one-fourth of all cancer diagnoses worldwide. Treatment of triple-negative breast cancer is major challenge and identification of specific drivers is required for targeted therapies. The aim of our present study is to elucidate the therapeutic potential of CSNK2ß silencing in triple negative breast cancer MDA-MB-231 cell.MethodsCSNK2ß gene has been knockdown using siRNA and silencing was estimated by both real time and western blot. Cell Titer-Glo (CTG) and colony formation assay and wound healing assay, cell cycle analysis by flow cytometry was performed to assess the role of CSNK2ß in cell proliferation, migration, cell cycle, and oncogenesis. Morphological assessment of nuclear condensation, apoptosis by Hoechst staining and measurement of intracellular ROS production was examined using fluorescence microscopy. Real time PCR and western blot was done to study the expression of genes related to cell proliferation, survival, metastasis, apoptosis, and autophagy.ResultsSilencing of CSNK2ß in MDA-MB-231 cells resulted in decreased cell viability, colony formation, and migratory potential. Cell cycle analysis showed that growth inhibitory effect was mediated by arresting the cells in G2/M phase. Furthermore, we demonstrated that silencing of CSNK2ß increased the nuclear condensation and intracellular ROS production. CSNK2ß regulates the expression of BAX, Bcl-xL, caspase 3, Beclin-1, LC3-I, p-ERK, p38-α, c-Myc, MAPK, c-Jun, NF-ĸB, β-catenin, E2F1, PCNA. We have also shown the functional relationship between CSNK2ß, PIN1, and PTOV1 by western blotting. We have first time reported that silencing CSNK2ß using siRNA can inhibit invasiveness and proliferation of MDA-MB-213 cells.ConclusionOur results suggested that CSNK2ß silencing may offer future therapeutic target in triple negative breast cancer.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献