Author:
Gupta Nitin,Benhamida Jamal,Bhargava Vipul,Goodman Daniel,Kain Elisabeth,Kerman Ian,Nguyen Ngan,Ollikainen Noah,Rodriguez Jesse,Wang Jian,Lipton Mary S.,Romine Margaret,Bafna Vineet,Smith Richard D.,Pevzner Pavel A.
Abstract
Recent proliferation of low-cost DNA sequencing techniques will soon lead to an explosive growth in the number of sequenced genomes and will turn manual annotations into a luxury. Mass spectrometry recently emerged as a valuable technique for proteogenomic annotations that improves on the state-of-the-art in predicting genes and other features. However, previous proteogenomic approaches were limited to a single genome and did not take advantage of analyzing mass spectrometry data from multiple genomes at once. We show that such a comparative proteogenomics approach (like comparative genomics) allows one to address the problems that remained beyond the reach of the traditional “single proteome” approach in mass spectrometry. In particular, we show how comparative proteogenomics addresses the notoriously difficult problem of “one-hit-wonders” in proteomics, improves on the existing gene prediction tools in genomics, and allows identification of rare post-translational modifications. We therefore argue that complementing DNA sequencing projects by comparative proteogenomics projects can be a viable approach to improve both genomic and proteomic annotations.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献