Decrease of Nibrin expression in chronic hypoxia is associated with hypoxia-induced chemoresistance in medulloblastoma cells

Author:

Cowman Sophie,Fan Yuen Ngan,Pizer Barry,Sée Violaine

Abstract

AbstractSolid tumours are less oxygenated than normal tissues. This is called tumour hypoxia and leads to resistance to radiotherapy and chemotherapy. The molecular mechanisms underlying such resistance have been investigated in a range of tumour types, including the adult brain tumours glioblastoma, yet little is known for paediatric brain tumours. Medulloblastoma (MB) is the most common malignant brain tumour in children. Here we used a common MB cell line (D283-MED), to investigate the mechanisms of chemo and radio-resistance in MB, comparing to another MB cell line (MEB-Med8A) and to a widely used glioblastoma cell line (U87MG). In D283-MED and U87MG, chronic hypoxia (5 days), but not acute hypoxia (24 h) induced resistance to etoposide and X-ray irradiation. This acquired resistance upon chronic hypoxia was much less pronounced in MEB-Med8A cells. Using a transcriptomic approach in D283-MED cells, we found a large transcriptional remodelling upon long term hypoxia, in particular the expression of a number of genes involved in detection and repair of double strand breaks (DSB) was altered. The levels of Nibrin (NBN) and MRE11, members of the MRN complex (MRE11/Rad50/NBN) responsible for DSB recognition, were significantly down-regulated. This was associated with a reduction of Ataxia Telangiectasia Mutated (ATM) activation by etoposide, indicating a profound dampening of the DNA damage signalling in hypoxic conditions. As a consequence, p53 activation by etoposide was reduced, and cell survival enhanced. Whilst U87MG shared the same dampened p53 activity, upon chemotherapeutic drug treatment in chronic hypoxic conditions, these cells used a different mechanism, independent of the DNA damage pathway. Together our results demonstrate a new mechanism explaining hypoxia-induced resistance involving the alteration of the response to DSB, but also highlight the cell type to cell type diversity and the necessity to take into account the differing tumour genetic make-up when considering re-sensitisation therapeutic protocols.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Hypoxia Helps Glioma to Fight Therapy

2. Acute versus chronic hypoxia in tumors: Controversial data concerning time frames and biological consequences;Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al],2012

3. ATM Activation and Signaling under Hypoxic Conditions

4. Amplification of the c-myc gene in human medulloblastoma cell lines and xenografts;Cancer Res,1990

5. Down-Regulation of Rad51 and Decreased Homologous Recombination in Hypoxic Cancer Cells

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3