Leveraging pleiotropy to discover and interpret GWAS results for sleep-associated traits

Author:

Akle Sebastian,Chun SungORCID,Teodosiadis Athanasios,Cade Brian E.,Wang Heming,Sofer Tamar,Evans Daniel S.,Stone Katie L.,Gharib Sina A.,Mukherjee Sutapa,Palmer Lyle J.,Hillman David,Rotter Jerome I.,Stamatoyannopoulos John A.,Redline Susan,Cotsapas Chris,Sunyaev Shamil R.

Abstract

AbstractGenetic association studies of many heritable traits resulting from physiological testing often have modest sample sizes due to the cost and invasiveness of the required phenotyping. This reduces statistical power to discover multiple genetic associations. We present a strategy to leverage pleiotropy between traits to both discover new loci and to provide mechanistic hypotheses of the underlying pathophysiology, using obstructive sleep apnea (OSA) as an exemplar. OSA is a common disorder diagnosed via overnight physiological testing (polysomnography). Here, we leverage pleiotropy with relevant cellular and cardio-metabolic phenotypes and gene expression traits to map new risk loci in an underpowered OSA GWAS. We identify several pleiotropic loci harboring suggestive associations to OSA and genome-wide significant associations to other traits, and show that their OSA association replicates in independent cohorts of diverse ancestries. By investigating pleiotropic loci, our strategy allows proposing new hypotheses about OSA pathobiology across many physiological layers. For example we find links between OSA, a measure of lung function (FEV1/FVC), and an eQTL of desmoplakin (DSP) in lung tissue. We also link a previously known genome-wide significant peak for OSA in the hexokinase (HK1) locus to hematocrit and other red blood cell related traits. Thus, the analysis of pleiotropic associations has the potential to assemble diverse phenotypes into a chain of mechanistic hypotheses that provide insight into the pathogenesis of complex human diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3